Assessment of In-Vehicle Exposure to Traffic-Related Ultrafine Particles and Other Pollutants

SCAQMD Conference on Ultrafine Particles

Los Angeles 5/1/06

Scott Fruin
Air Resources Board

Collaborators

Dane Westerdahl Todd Sax

California Air Resources Board

Philip Fine

South Coast AQMD

Constantinos Sioutas

University of Southern California

Outline

- Why concerned about in-vehicle ultrafine particles (UFP)
- Why in-vehicle concentrations high
- Importance of high emitting vehicles
- Study performed
 - Route, instruments
 - Time series plots
 - Concentration predictors
 - Associations with annual traffic count data
- Exposure implications

Importance of UFP

- Weak associations with PM mass
- On an equal mass basis may be more toxic
- Dose differences
 - Deposition efficiency
 - Penetration into blood stream, cell mitochondria, can cross blood/brain barrier
- In-vehicle UFP fresher—higher fraction of volatile particles (temp. dependent)

In-Vehicle Concentrations

- Air exchange rates in vehicles high
- Road Concentrations:

Centerline > Roadside >> Ambient

In-vehicle concentrations ~ centerline

For newer, tighter vehicles, UFP reductions possible if ventilation re-circulated, but CO2 build-up a concern (i.e., > 2000 ppm)

Purpose

- Characterize good predictors of invehicle concentrations of UFP and other vehicle-related pollutants
 - Better exposure assessment
 - Reduce exposure misclassification in epidemiology

High emitter of BC, PM_{2.5}

In-Vehicle PM2.5

High Diesel UFP Emitters Diesel school bus and TDI Jetta No visible emissions, similar effect

Highest Gasoline-Powered UFP Emitter

No visible emissions

Effects of High Emitters, Exhaust Height

Average black carbon (BC) conc.
 behind different vehicle types, LA:

Vehicle Type	BC Concentration
No target or passenger ca	ar 4.8 µg/m³
Tractor trailer	11
Diesel passenger car	18
Delivery truck, high exh.	14
Delivery truck, low ex.	23
MTA bus, high exhaust	18
MTA bus, low exhaust	64
Highest emitter observed	>700

The Electric RAV4

2003 Field Study Route

Real time:

BC, UFP, NO, NO₂, CO, CO₂, PM_{2.5}, PM size dist., PM-bound PAH

Time Series: High Correlation April 16, 2003

Average In-Vehicle Concentrations for Four Days

Location or roadway	Ultrafine particle counts	NO	Black carbon	CO2	Avg. min. per run
	(1000s cm ⁻³)	(ppb)	(µg m⁻³)	(ppm)	
Residential	27 ± 3	19 ± 7	1.4 ± 0.6	420 ±	14
(Long Beach)				70	
Arterial roads	38 ± 20	90 ± 50	2.8 ± 1	730 ± 100	8
(N of USC)	40 00	450 40	4.0.00		4.5
110N freeway near Pasadena (~300 trucks/day)	43 ± 20	150 ± 40	1.6 ± 0.8	770 ± 50	15
110N freeway (~3000 trucks/day)	67 ± 30	230 ± 60	3.9 ± 2	850 ± 30	10
10E freeway (~10,000 trucks/day)	120 ± 50	260 ± 80	13 ± 5	1000 ± 40	5
710S freeway (~25,000 trucks/day)	200 ± 80	400 ± 100	14 ± 5	850 ± 80	21

Coeffs of Determination (R²) for Predictor Variables of In-Vehicle Fwy UFP Concs

			Black	
	UFP	NO	Carbon	CO
PREDICTOR (# labels)	<u>(#/cm³)</u>	<u>(ppb)</u>	<u>(µg/m³)</u>	(ppm)
Road + Direction (17)	0.66	0.56	0.69	0.31
Truck Density (5)	0.58	0.57	0.64	0.096
Hr of Day (wind speed)(9)	0.26	0.24	0.26	0.11
Vehicle Followed (6)	0.20	0.18	0.18	0.24
Speed (6)	0.19	0.23	0.18	0.11
Overall Congestion (5)	0.14	0.15	0.14	0.23
Day (4)	0.095	0.19	0.09	0.15
Best two variables (green)	0.68	0.65	0.69	0.28

Effect of Truck Density by Hour of Day

Effect of Speed and Vehicle Followed

Relationship between UFP and Average Daily Truck Count (2003)

Relationship between UFP and Average Vehicle Count (2003)

Relationship between CO and Average Daily Truck Count (2003)

Effect of Lane Position 405 Freeway, Los Angeles

Particle Size Distribution 710 + 110 Freeways and Pasadena

Arterial Roads and UFP Concentrations

- Arterial mileage approx. equal to fwy, speed approx. half
- UFP concentrations 1/3 to 1/2 of freeways
 - ◆ Fewer trucks, fewer lanes, lower speeds(?)
 - A Harder accelerations, closer distances
- Stop lights and accelerations key
- Good predictors of UFP concentrations more difficult
 - Surrounding vehicle orientation, wind speed critical, yet difficult to characterize

Arterial Route Western, 120th, Avalon, Jefferson

Estimate of In-Vehicle Fraction of Total UFP Exposure

- Typical UFP Conc. and Times:
 - Residential 8 hrs 2000/cm³ (night)
 - Residential 5 hrs 5000/cm³ (evening)

(both from Wallace et al., 2004)

- Workplace (office) 5.5 hrs 5000/cm³
- Outdoors 1 hr 20,000/cm³
- In-vehicle arterial 1.0 hr 50,000/cm³
- In-vehicle freeway 0.5 hr 150,000/cm³
- Wt'd avg. conc. of ~10,000/cm³

(matches Abraham et al., 2002)

>50% exposure from in-vehicle time

(Ignores high workplace exposures, smoking or ETS exposure)

Conclusions

 In-vehicle time contributes significantly to overall UFP exposures; both freeway and arterial time important

> Probably > 50% of total exposure on average for nonsmoking urbanites

- In-vehicle UFP concentration can be wellpredicted on freeways from:
 - Surrounding truck counts (real time) -or-
 - Average truck counts for a given roadway segment
- On arterial roads:

Number of surrounding gasoline-powered vehicles making hard accelerations from stoplights

Thanks

ARB Staff Investigators

Steve Mara

Others

TSI Toyota Aerodyne-API

Magee Scientific R&P EcoChem

South Coast AQMD